
Flask-MonitoringDashboard
Documentation

Release 1.10.5

Patrick Vogel & Thijs Klooster

Mar 05, 2018

Contents

1 What is the Flask-Monitoring-Dashboard? 3

2 Functionality 5

3 User’s Guide 7
3.1 Installation . 7
3.2 Configuration . 9
3.3 Detailed Functionality . 11

4 Developer information 15
4.1 Contact . 15
4.2 TODO List . 16
4.3 Change Log . 16

i

ii

Flask-MonitoringDashboard Documentation, Release 1.10.5

Dashboard for automatic monitoring of Flask web services.

Contents 1

Flask-MonitoringDashboard Documentation, Release 1.10.5

2 Contents

CHAPTER 1

What is the Flask-Monitoring-Dashboard?

The Flask Monitoring Dashboard is designed to monitor your existing Flask application. You can find a brief overview
of the functionality here.

Or you can watch the video below:

3

Flask-MonitoringDashboard Documentation, Release 1.10.5

4 Chapter 1. What is the Flask-Monitoring-Dashboard?

CHAPTER 2

Functionality

The Flask Monitoring Dashboard is an extension that offers 4 main functionalities with little effort from the Flask
developer:

• Monitor the Flask application: Our Dashboard allows you to see which endpoints process a lot of request
and how fast. Additionally, it provides information about the evolving performance of an endpoint throughout
different versions if you’re using git.

• Monitor your test coverage: The dashboard allows you to find out which endpoints are covered by unit tests,
allowing also for integration with Travis for automation purposes. For more information, see this file.

• Collect extra information about outliers: Outliers are requests that take much longer to process than regular
requests. The dashboard automatically detects that a request is an outlier and stores extra information about it
(stack trace, request values, Request headers, Request environment).

• Visualize the collected data in a number useful graphs: The dashboard is automatically added to your existing
Flask application. You can view the results by default using the default endpoint (this can be configured to
another route): dashboard.

For a more advanced documentation, take a look at the information on this page.

5

http://flask-monitoringdashboard.readthedocs.io/en/latest/functionality.html#test-coverage-monitoring
http://localhost:5000/dashboard
http://flask-monitoringdashboard.readthedocs.io/en/latest/functionality.html

Flask-MonitoringDashboard Documentation, Release 1.10.5

6 Chapter 2. Functionality

CHAPTER 3

User’s Guide

If you are interested in the Flask Monitoring Dashboard, you can find more information in the links below:

3.1 Installation

This is the complete overview of installing the Flask Monitoring Dashboard. It starts from the very basic, but it is
likely that you can directly go to Installing the Flask Monitoring Dashboard Package.

3.1.1 Install Python

You can check if you have Python installed by opening a terminal and execution the following command:

python3 --version

It should return something like ‘Python 3.6.3’, if not, you probably see something like ‘bash: python3: command not
found’. In the former case, you’re ok. In the latter, you can follow this link to install Python.

3.1.2 Installing a Virtual Environment (Optional)

Although you don’t need a Virtual Environment, it is highly recommend. See this page to install a Virtual Environment.

Configuring the Virtual Environment (Optional)

If you have skipped the previous section, you can also skip this one (since it’s optional). Once you’ve installed the
Virtual Environment, you need to configure it. This can be done by the following command:

virtualenv ENV

Or using the following command for Python3:

7

http://docs.python-guide.org/en/latest/starting/installation/
https://virtualenv.pypa.io/en/stable/installation/

Flask-MonitoringDashboard Documentation, Release 1.10.5

virtualenv --python=python3 ENV

Activate the Virtual Environment (Optional)

This is the last part of the configuring the virtual environment. You should do this before you want to execute any
python script/program. It is (again) one simple command:

source bin/activate

3.1.3 Installing the Flask Monitoring Dashboard Package

You can install the Flask Monitoring Dashboard using the command below:

pip install flask_monitoringdashboard

Alternatively, you can install the Flask Monitoring Dashboard from Github:

git clone https://github.com/flask-dashboard/Flask-MonitoringDashboard.git
cd Flask-MonitoringDashboard
python setup.py install

3.1.4 Setup the Flask Monitoring Dashboard

After you’ve successfully installed the package, you can use it in your code. Suppose that you’ve already a Flask
application that looks like this:

from flask import Flask
app = Flask(__name__)

...

@app.route('/')
def index():

return 'Hello World!'

if __name__ == '__main__':
app.run(debug=True)

You can add the extension to your Flask application with only two lines of code:

...
import flask_monitoringdashboard as dashboard
dashboard.bind(app)

Together, it becomes:

from flask import Flask
import flask_monitoringdashboard as dashboard

app = Flask(__name__)
dashboard.bind(app)

8 Chapter 3. User’s Guide

https://github.com/flask-dashboard/Flask-MonitoringDashboard

Flask-MonitoringDashboard Documentation, Release 1.10.5

...

@app.route('/')
def index():

return 'Hello World!'

if __name__ == '__main__':
app.run(debug=True)

3.1.5 Further configuration

You are now ready for using the Flask Monitoring Dashboard, and you can already view the dashboard at: dashboard.

However, the Dashboard offers many functionality which have to be configured. This is explained on the configuration
page.

3.2 Configuration

Once you have successfully installed the Flask Monitoring Dashboard from this page, you can use the advanced
features by correctly configuration the dashboard.

3.2.1 Using a configuration file

You can use a configuration file for all options below. This is explained in the following section. In order to configure
the dashboard with the configuration-file, you can use the following function:

dashboard.config.init_from(file='/<path to file>/config.cfg')

Thus, it becomes:

from flask import Flask
import flask_monitoringdashboard as dashboard

app = Flask(__name__)
dashboard.config.init_from(file='/<path to file>/config.cfg')
Make sure that you first configure the dashboard, before binding it to your Flask
→˓application
dashboard.bind(app)
...

@app.route('/')
def index():

return 'Hello World!'

if __name__ == '__main__':
app.run(debug=True)

Instead of having a hard-coded string containing the location of the config file in the code above, it is also possible to
define an environment variable that specifies the location of this config file. The line should then be:

dashboard.config.init_from(envvar='DASHBOARD_CONFIG')

3.2. Configuration 9

http://localhost:5000/dashboard
configuration.html
configuration.html
installation.html

Flask-MonitoringDashboard Documentation, Release 1.10.5

This will configure the dashboard based on the file provided in the environment variable called DASH-
BOARD_CONFIG.

3.2.2 The content of the configuration file

Once the setup is done, a configuration file (‘config.cfg’) should be set next to the python file that contains the entry
point of the app. The following things can be configured:

[dashboard]
APP_VERSION=1.0
CUSTOM_LINK=dashboard
DATABASE=sqlite:////<path to your project>/dashboard.db
USERNAME=admin
PASSWORD=admin
GUEST_USERNAME=guest
GUEST_PASSWORD=['dashboardguest!', 'second_pw!']
GIT=/<path to your project>/.git/
OUTLIER_DETECTION_CONSTANT=2.5
TEST_DIR=/<path to your project>/tests/
N=5
SUBMIT_RESULTS_URL=http://0.0.0.0:5000/dashboard/submit-test-results
COLORS={'main':[0,97,255], 'static':[255,153,0]}

This might look a bit overwhelming, but the following list explains everything in detail:

• APP_VERSION: The version of the app that you use. Updating the version helps in showing differences in
execution times of a function over a period of time.

• CUSTOM_LINK: The dashboard can be visited at localhost:5000/{{CUSTOM_LINK}}.

• DATABASE: Suppose you have multiple projects where you’re working on and want to separate the results.
Then you can specify different database_names, such that the result of each project is stored in its own database.

• USERNAME and PASSWORD: Must be used for logging into the dashboard. Thus both are required.

• GUEST_USERNAME and GUEST_PASSWORD: A guest can only see the results, but cannot config-
ure/download any data.

• GIT: Since updating the version in the configuration-file when updating code isn’t very useful, it is a better idea
to provide the location of the git-folder. From the git-folder, The version is automatically retrieved by reading
the commit-id (hashed value). The location is relative to the configuration-file.

• OUTLIER_DETECTION_CONSTANT: When the execution time is more than this 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 * 𝑎𝑣𝑒𝑟𝑎𝑔𝑒,
extra information is logged into the database. A default value for this variable is 2.5, but can be changed in the
config-file.

• TEST_DIR, N, SUBMIT_RESULTS_URL: To enable Travis to run your unit tests and send the results to the
dashboard, you have to set those values:

– TEST_DIR specifies where the unit tests reside.

– SUBMIT_RESULTS_URL specifies where Travis should upload the test results to. When left out, the
results will not be sent anywhere, but the performance collection process will still run.

– N specifies the number of times Travis should run each unit test.

• COLORS: The endpoints are automatically hashed into a color. However, if you want to specify a different
color for an endpoint, you can set this variable. It must be a dictionary with the endpoint-name as a key, and a
list of length 3 with the RGB-values. For example:

10 Chapter 3. User’s Guide

Flask-MonitoringDashboard Documentation, Release 1.10.5

COLORS={'main':[0,97,255], 'static':[255,153,0]}

3.2.3 What have you configured?

A lot of configuration options, but you might wonder what functionality is now supported in your Flask Monitoring
Dashboard? Have a look at this file to find the answer.

3.3 Detailed Functionality

The functionality of the dashboard is divided into 4 main components. You can find detailed information about every
comopont below:

3.3.1 Endpoint Monitoring

The core functionality of the Dashboard is monitoring which Endpoints are heavily used and which are not. If you
have successfully configured the dashboard from this page, then you are ready to use it. In order to monitor a number
of endpoints, you have to do the following:

1. Log into the dashboard at: http://localhost:5000/dashboard/login

2. Go to the Rules-tab in the left menu: http://localhost:5000/dashboard/rules

3. Select the rules that you want to monitor.

4. Wait until a request to this endpoint is being made.

5. Go to the Measurements-tab in the left menu: http://localhost:5000/measurements/overview

As you can see on the last page (http://localhost:5000/measurements/overview) there are a number of tabs available.
All tabs are explained in the Visualisations-tab.

Collected data

For each request that is being to a monitored-endpoint, the following data is recorded:

• Exeuction time: measured in ms.

• Time: the current timestamp of when the request is being made.

• Version: the version of the Flask-application. This can either be retrieved via the CUSTOM_VERSION value,
or via the GIT value. If both are configured, the GIT value is used.

• group_by: An option to group the collected results. As most Flask applications have some kind of user man-
agement, this variable can be used to track the performance between different users. It is configured using the
following command:

def get_user_id():
return '1234' # replace with a function to retrieve the id of the

user within a request.

dashboard.config.get_group_by = get_session_id
Note that the function-pointer is passed, not the function itself.

Thus, it becomes:

3.3. Detailed Functionality 11

functionality.html
configuration.html
http://localhost:5000/dashboard/login
http://localhost:5000/dashboard/rules
http://localhost:5000/measurements/overview
http://localhost:5000/measurements/overview

Flask-MonitoringDashboard Documentation, Release 1.10.5

from flask import Flask
import flask_monitoringdashboard as dashboard

app = Flask(__name__)
dashboard.config.init_from(file='/<path to file>/config.cfg')

def get_user_id():
return '1234' # replace with a function to retrieve the id of the

user within a request.

dashboard.config.get_group_by = get_session_id
dashboard.bind(app)

@app.route('/')
def index():

return 'Hello World!'

if __name__ == '__main__':
app.run(debug=True)

• IP: The IP-address from which the request is made.

Observations

Using the collected data, a number of observations can be made:

• Is there a difference in execution time between different versions of the application?

• Is there a difference in execution time between different users of the application?

• Is there a difference in execution time between different IP addresses? As tracking the performance between
different users requires more configuration, this can be a quick alternative.

• On which moments of the day does the Flask application process the most requests?

• What are the users that produce the most requests?

• Do users experience different execution times in different version of the application?

3.3.2 Test-Coverage Monitoring

To enable Travis to run your unit tests and send the results to the dashboard, four steps have to be taken:

1. Update the config file (‘config.cfg’) to include three additional values, TEST_DIR, SUBMIT_RESULTS_URL
and N.

• TEST_DIR specifies where the unit tests reside.

• SUBMIT_RESULTS_URL specifies where Travis should upload the test results to. When left out, the
results will not be sent anywhere, but the performance collection process will still run.

• N specifies the number of times Travis should run each unit test.

2. The installation requirement for the dashboard has to be added to the setup.py file of your app:

dependency_links=["https://github.com/flask-dashboard/Flask-
→˓MonitoringDashboard/tarball/master#egg=flask_monitoringdashboard"]

install_requires=('flask_monitoringdashboard')

12 Chapter 3. User’s Guide

Flask-MonitoringDashboard Documentation, Release 1.10.5

3. In your .travis.yml file, three script commands should be added:

export DASHBOARD_CONFIG=./config.cfg
export DASHBOARD_LOG_DIR=./logs/
python -m flask_monitoringdashboard.collect_performance

The config environment variable specifies where the performance collection process can find the config
file. The log directory environment variable specifies where the performance collection process should
place the logs it uses. The third command will start the actual performance collection process.

4. A method that is executed after every request should be added to the blueprint of your app. This is done by the
dashboard automatically when the blueprint is passed to the binding function like so:

dashboard.bind(app=app, blue_print=api)

This extra method is needed for the logging, and without it, the unit test results cannot be grouped by endpoint
that they test.

3.3.3 Outliers

It is always useful to investigate why certain requests take way longer to process than other requests. If this is the case,
it is seen as an outlier. Mathematically an outlier is determined if the execution of the request is longer than:

> 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 * 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where average is the average execution time per endpoint, and constant is given in the configuration-file (otherwise
its default value is 2.5).

When a request is an outlier, the dashboard stores more information, such as:

• The stacktrace in which it got stuck.

• The percentage of the CPU’s that are in use.

• The current amount of memory that is used.

• Request values.

• Request headers.

• Request environment.

The data that is collected from outliers, can be seen by the following procedure:

1. Go to the Measurements-tab in the left menu: http://localhost:5000/measurements/overview

2. Click on the Details-button (on the right side) for which endpoint you want to see the outliers-information.

3. Go to the outliers-tab: http://localhost:5000/dashboard/<endpoint-name>/main/outliers

3.3.4 Visualisations

There are a number of visualisation generated to view the results that have been collected in (Endpoint-Monitoring)
and (Test-Coverage Monitoring).

The main difference is that visualisations from (Endpoint-Monitoring) can be found in the tab ‘Measurements’ (in the
left menu), while visualisations from (Test-Coverage Monitoring) can be found in the tab ‘Test Monitor’ (below the
‘Measurements’-tab).

The ‘Measurements’-tab contains the following content:

3.3. Detailed Functionality 13

http://localhost:5000/measurements/overview
http://localhost:5000/dashboard

Flask-MonitoringDashboard Documentation, Release 1.10.5

1. Overview: A table with the all the endpoints that are being monitored (or have been monitored in the past).
This table provides information about when the endpoint is last being requested, and the average execution
time. Furthermore, it has a ‘Details’ button on the right. This is explained further in (6.).

2. Heatmap of number of requests: This graph provides information for each hour of the day about how often
the endpoint is being requested. In this graph it is possible to detect popular hours during the day.

3. Requests per endpoint: This graph provides a row of information per day. In this graph, you can find whether
the total number of requests grows over days.

4. Time per version: This graph provides a row of information per application-version. In this graph, you can
find whether the execution time for all requests grows over the versions of the application.

5. Time per endpoint: This graph provides a row of information per endpoint. In that row, you can find all the
requests for that endpoint. This provides information whether certain endpoints perform better (in terms of
execution time) than other endpoints.

6. For each endpoint, there is a ‘Details’-button. This provides the following information (thus, all information
below is specific for a single endpoint):

• Heatmap: The same heatmap as explained in (2.), but this time it is focused on the data of that particular
endpoint only.

• Time per hour: A vertical bar plot with the execution time (minimum, average and maximum) for each
hour.

• Hits per hour: A vertical bar plot with the number of requests for that endpoint.

• Time per version per user: A circle plot with the average execution time per user per version. Thus,
this graph consists of 3 dimensions (execution time, users, versions). A larger circle represents a higher
execution time.

• Time per version per ip: The same type of plot as (Time per version per user), but now that users are
replaced by IP-addresses.

• Time per version: A horizontal box plot with the execution times for a specific version. This graph is
equivalent to (4.), but now it is focused on the data of that particular endpoint only.

• Time per user: A horizontal box plot with the execution time per user. In this graph, it is possible to
detect if there is a difference in the execution time between users.

• Outliers: See Section (Outliers) above.

3.3.5 Need more information?

See the contact page to see how you can contribute on the project. Furthermore you can request this page for questions,
bugs, or other information.

14 Chapter 3. User’s Guide

contact.html

CHAPTER 4

Developer information

4.1 Contact

In this file, you can find information to find us.

4.1.1 Found a bug?

Post an issue on Github. You can use the template below for the right formatting:

Issue Template

• Expected Behavior

Tell us what should happen

• Current Behavior

Tell us what happens instead of the expected behavior

• Possible Solution

Not obligatory, but suggest a fix/reason for the bug

• Steps to Reproduce

Provide a link to a live example, or an unambiguous set of steps to reproduce this bug. Include code to
reproduce, if relevant

1.

2.

3.

4.

15

https://github.com/flask-dashboard/Flask-MonitoringDashboard/issues

Flask-MonitoringDashboard Documentation, Release 1.10.5

• Context (Environment)

How has this issue affected you? What are you trying to accomplish? Providing context helps us come up
with a solution that is most useful in the real world

• Detailed Description

Provide a detailed description of the change or addition you are proposing

• Possible Implementation

Not obligatory, but suggest an idea for implementing addition or change

4.2 TODO List

All things that can improved in Flask Monitoring Dashboard are listed below.

4.2.1 Features to be implemented

• [] Pagination of results. See this page: http://flask.pocoo.org/snippets/44/

This process is especially useful for the following results:

– Page ‘/rules’ - Max 20 endpoints per table.

– Page ‘/measurements/overview’ - Max 20 endpoints per table.

– Page ‘/measurements/heatmap’ - Heatmap for each week

– Page ‘/measurements/requests’ - Barplot for each week

– Page ‘/measurements/versions’ - Max 10 versions per plot

– Page ‘/measurements/endpoints’ - Max 10 endpoints per plot.

– Page ‘/result/<endpoint>/heatmap - Heatmap for each week.

– Page ‘/result/<endpoint>/time_per_hour’ - barplot for each week.

– Page ‘/result/<endpoint>/hits_per_hour’ - barplot for each week.

– Page ‘/result/<endpoint>/time_per_version’ - Max 10 versions per plot.

– Page ‘/result/<endpoint>/outliers’ - Max 20 results per table.

• [] Updating the Outlier-object, as it now works by writing all stack-traces to a file. Once this is done, read
everything from it. This is a security flaw, and doesn’t produce the right value if multiple requests are using this
file at the same time.

4.2.2 Work in progress

Use this section if someone is already working on an item above.

4.3 Change Log

All notable changes to this project will be documented in this file. This project adheres to Semantic Versioning. Please
note that the changes before version 1.10.0 have not been documented.

16 Chapter 4. Developer information

http://flask.pocoo.org/snippets/44/
http://semver.org/

Flask-MonitoringDashboard Documentation, Release 1.10.5

4.3.1 Unreleased

Changed

• Added TODO List

4.3.2 v1.10.0

Changed

• Added security for automatic endpoint-data retrieval.

• Added test for export_data-endpoints

• Added MIT License.

• Added documentation

4.3. Change Log 17

	What is the Flask-Monitoring-Dashboard?
	Functionality
	User’s Guide
	Installation
	Configuration
	Detailed Functionality

	Developer information
	Contact
	TODO List
	Change Log

